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Learning driver-response relationships from synchronization patterns
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We test recent claims that causal~driver-response! relationships can be deduced from interdependencies
between simultaneously measured time series. We apply two recently proposed interdependence measures that
should give results similar to cross predictabilities used by previous authors. The systems that we study are
asymmetrically coupled simple models~Lorenz, Roessler, and He´non models!, the couplings being such that
they lead to generalized synchronization. If the data were perfect~noise-free, infinitely long!, we should be able
to detect, at least in some cases, which of the coupled systems is the driver and which the response. This might
no longer be true if the time series has finite length. Instead, estimated interdependencies depend strongly on
which of the systems has a higher effective dimensionat the typical neighborhood sizesused to estimate them,
and causal relationships are more difficult to detect. We also show that slightly different variants of the
interdependence measure can have quite different sensitivities.

PACS number~s!: 05.45.Tp, 05.45.Xt
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I. INTRODUCTION

The study of synchronization between chaotic syste
has been a topic of increasing interest since the beginnin
the 1990s. One important step in this direction was the in
duction of the concept ofgeneralized synchronization@1–3#,
extending previous studies of coupled identical syste
~identical synchronization@4–9#! to the study of coupled
systems with different dynamics.

Let us denote byX andY two dynamical systems, and b
x5$x1 ,...,xd% and y5$y1 ,...,yr% their state vectors, ob
tained, for example, by delay embedding. We assume in
following that the dynamics is deterministic with continuo
time ~the case of maps is completely analogous, and will
treated in Secs. III and IV!. We further assume the system
are unidirectionally coupled, sayingX is the autonomous
driver andY the driven response:

ẋ~ t !5F„x~ t !…, ~1a!

ẏ~ t !5G„y~ t !,x~ t !…. ~1b!

We speak about generalized synchronization betweeX
andY if the following relation exists:

y~ t !5C„x~ t !…. ~2!

This requirement is less restrictive than that of identical s
chronization, in whichC51. Equation~2! implies that the
state of the response system is a functiononly of the state of
the driver. It is not to be confused with the opposite relat
x(t)5F„y(t)… ~considered in@10#!, which is generically
valid for sufficiently high embedding dimensions if the co
pling is nonsingular, in the sense of obeying det(]Gi /]xn)
Þ0 everywhere. This follows from the implicit functio
theorem, which allows us to invert Eq.~1b! to x5x(y,ẏ),
and from the fact thatỹ(t)5„y(t),ẏ(t)… is as good a state
vector asy(t). In particular, if we considerG„y(t),x(t)…

*Author to whom correspondence should be addressed.
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5H„y(t)…1U„x(t)…, we immediately havex(t)5U21( ẏ(t)
2H„y(t)…) if U(x) can be inverted.

The transformationC does not need to be smooth as co
sidered in@3,11# and explicitly required in@12,13#. In fact,
Pyragas@14# defined as strong and weak synchronizatio
the cases of smooth and nonsmooth transformations, res
tively ~see also@15#!.

If one of the systems drives the other and a relations
like Eq. ~2! exists, it is possible to predict the response fro
the simultaneous state of the driver. But the opposite is
true. Just knowing that a relationship like Eq.~2! exists and
that the state ofY can be predicted from that ofX, it is in
general not possible to establish which is the driver a
which is the response. This is obvious whenC is bijective
~i.e., F5C21 exists and is unique!. The above argument
tell us thatC is indeed likely to be bijective in the case o
generalized synchronization, at least for nearly allx: If a
coupling is not regular in the above sense, then its singul
ties are typically located on a set of measure zero. One m
tend to believe thatX must controlY ~and not the opposite!,
if y follows the motion ofx with a positive time delay. But
even then one cannot be sure, since there could be an int
delay loop inY that causes the emitted time series to l
behind. Also, both systems could be driven by a third s
tem. Thus detecting causal relationships is not easy, in g
eral, although it is of course of utmost importance in ma
applications.

In the above we pretended that we could detectexactly
whether the state of one of the systems is a function of
other. This is of course never the case in practical appl
tions. Different observables that should enable one to de
interdependencies in realistic cases were introduced by
eral authors. Following an original idea of Rulkov and c
workers @3,11#, mutual cross predictabilities were define
and studied by Schiffet al. @17# and Le Van Quyenet al.
@16,10#. A quantity more closely related to that of@3#, but
optimized for robustness to noise and imperfections in
data, was used in@18#. In the latter paper, a number of othe
variants were also discussed. Some of these variants w
tested and found to be inferior, but no systematic tests w
made.
5142 ©2000 The American Physical Society
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In contrast to our above discussion, the authors of@17#
and@16,10# claimed that driver-response relationshipscanbe
deduced from such interdependencies. But their propos
backed by numerical studies of simple model systems, w
mutually contradictory. While it was argued in@17# that the
driver statex should be more dependent on the response s

y ~i.e., there exists a stronger functional dependencyy→
F

x!
than vice versa~which is, as we said, a bit counterintuitive!,
exactly the opposite was claimed in@16,10#. Finally, in @18#
it was claimed that neither can be expected to be correc
realistic situations with finite noisy data, and that it is
general the state of the system with more excited degree
freedom~the more ‘‘active’’ system! that is more indepen
dent, while the state of the more ‘‘passive’’ system~with less
excited degrees of freedom! depends on it.

It is the purpose of the present work to settle this ques
by carefully studying simple toy models, including Loren
Roessler, and He´non systems, using two of the interdepe
dence measures proposed in@18#. Basic notions involved in
generalized synchronization are reviewed in Sec. II. In S
III, we recall the operational definition of interdependen
used in@18#. Numerical results are presented in Sec. IV, a
our conclusion is drawn in Sec. V.

II. GENERALIZED SYNCHRONIZATION WITH
EXACTLY KNOWN DYNAMICS

While identical synchronization is easily visualized b
plotting the difference between one of the coordinates of
driver and the corresponding coordinate of the response
similarly simple way exists to detect generalized synchro
zation. Constructing the functionC explicitly @19# might be
possible in particularly simple cases, but since this will ne
be exact, it will never be clear whether deviations from E
~2! are due to a lack of synchronization or the inexactnes
C. Instead, the methods of choice in cases where the e
equations of motion are known and where arbitrary init
states can be prepared are the study of Lyapunov expon
and the identical synchronization of two identical respon
systems differing in their initial conditions.

For the driver-response systems as in Eq.~1!, one hasd
1r different Lyapunov exponents. Of these,d exponents co-
incide with those of the~autonomous! driver denoted by
l i

(X) , i 51...d. The otherr exponents coincide with those o
the response, considered as a nonautonomous system d
by the external signalx(t) ~calledconditional Lyapunov ex-
ponentsin @8#.1 They will be calledl i

(Y) , i 51...r . Ranking
the Lyapunov exponents as usual by magnitude, we h
generalized synchronization iffl i

(Y),0.
Furthermore, once the Lyapunov exponents are kno

the dimension of the combined systemX1Y can be esti-

1To see this, we have to recall that all Lyapunov exponents
obtained by iteratingd1r basis vectors in the tangent space, a
reorthogonalizing them repeatedly. Tangent vectors correspon
to l i

(X) span only the firstd coordinates. The remaining tange
vectors have the firstd components equal to zero, either by orthog
nalization or because their lastr components increase faster tha
any of the firstd components.
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mated from the Kaplan Kalpan-Yorke formula@20#

DX1Y5 l 1(
j 51

l
l j

ul l 11u
~3!

~here, l is the largest integer for which the sum overj is
non-negative!. Generically, we must expect this also to b
the dimension ofY alone.2 The reason is that, as pointed o
in the Introduction,X will be a ~single- or multivalued! func-
tion of Y, if the inverse ofG(x,y) is single- or multivalued.
On the other hand, the Kaplan-Yorke dimension ofX alone
may be equal toDX1Y or smaller. It is given by a formula
similar to Eq.~3!, but with l i replaced byl i

(X) . We see that

DX,DX1Y iff l1
~Y!.l l 11

~X! , ~4!

wherel is determined byS j < ll j
(X)<0,S j < l 11l j

(X) . If this
inequality holds~together withl1

(Y),0), we haveweak syn-
chronization in the sense of Pyragas@14#. In the opposite
case, i.e.,l1

(Y)<l i 11
(X) , one is likely to have strong synchro

nization, although this might not be true due to multifrac
lity. Due to the latter, it is possible that the box-countin
dimension ofX is strictly smaller than that ofX1Y, al-
though the equality holds for the Kaplan-Yorke~i.e., infor-
mation! dimensions. In such a caseC cannot be smooth, bu
regions whereC is nonsmooth might well be of measur
zero @15#.

Another approach for detecting generalized synchron
tion is by using two identical response systems that dif
only in their initial conditions. If these replicas get synchr
nized after some transient, their trajectories are obviou
independent of the initial conditions, thus being only a fun
tion of the driver. This is most easily checked visually, e.
by plotting the difference between two analogous com
nents of the two replicas against time. In this way one c
also check for intermittencies and long transients that c
together with finite numerical resolution, severely obscu
the interpretation.

III. GENERALIZED SYNCHRONIZATION IN REAL LIFE

The above considerations depend on the availability of
exact equations of motion, and on the ability to prepare id
tical replicas. Neither holds for typical applications.

Real signals usually consist of short segments of data c
taminated by noise. Furthermore, the dynamics of the sys
is not known, and therefore the methods described in
previous section are not applicable.

While identically synchronized systems describe the sa
trajectory in the phase space, the hallmark of a relations
as in Eq.~2! is that any recurrence ofX implies a recurrence
of Y. If X comesexactlyback to a state it had already bee
in before, the same must be true forY. In real data, one
cannot, of course, expect exact recurrence. We will there
use as a criterion that whenever two states ofX are similar,
the contemporary states ofY are also similar.

In @17,16,10#, this was implemented by making forecasre

ng

2For example, the dimension of an attractor constructed ex
sively from components ofy; we keep, of course, the fact thatY is
driven byX.



sts
In

re

o

re
uc

e

is
tim

m

d,
-

a-

e
e

this

the
. In-

ean

-
than
rage

it

is

tion

ca-
or-

ny
ast
ere
that
and
ould

be
a

ose
rs.

lly

5144 PRE 61R. QUIAN QUIROGA, J. ARNHOLD, AND P. GRASSBERGER
of xn using local neighborhoods~e.g., by means of locally
linear maps! and comparing the quality of these foreca
with that of forecasts based on ‘‘wrong’’ neighborhoods.
the latter, the nearest neighbors ofxn are replaced by the
equal time partners of the nearest neighbors ofyn . For rea-
sons explained in@18#, we prefer to use instead a measu
closer to the original proposal of Rulkovet al. @3#. But we
should stress that we see no reason why our results sh
not be carried over to the observables used in@17,16,10#
immediately.

Let us suppose we have two simultaneously measu
univariate time series from which we can reconstr
m-dimensional delay vectors@21# xn5(xn ,...,xn2m11) and
yn5(yn ,...,yn2m11), n51,...,N.

Let r n, j andsn, j , j 51,...,k, denote the time indices of th
k nearest neighbors ofxn andyn , respectively. For eachxn ,
the squared mean Euclidean distance to itsk neighbors is
defined as

Rn
~k!~X!5

1

k (
j 51

k

~xn2xr n, j
!2, ~5!

and theY-conditionedsquared mean Euclidean distance
defined by replacing the nearest neighbors by the equal
partners of the closest neighbors ofyn ,

Rn
~k!~XuY!5

1

k (
j 51

k

~xn2xsn, j
!2. ~6!

If the point cloud$xn% has average squared radiusR(X)
5^R(N21)(X)& and effective dimensionD ~for a stochastic
time series embedded inm dimensions, D5m!, then
Rn

(k)(X)!R(X) for k!N. More precisely, we expect

Rn
~k!~X!/R~X!;~k/N!2/D, ~7!

whereD is the dimension of the probability measure fro
which the pointsxn are drawn. Furthermore,Rn

(k)(XuY)
'Rn

(k)(X)!R(X) if the systems are strongly correlate
while Rn

(k)(XuY)@Rn
(k)(X) if they are independent. Accord

ingly, we can define an interdependence measureS(k)(XuY)
as

S~k!~XuY!5
1

N (
n51

N Rn
~k!~X!

Rn
~k!~XuY!

. ~8!

SinceRn
(k)(XuY)>Rn

(k)(X) by construction, we have

0,S~k!~XuY!<1. ~9!

Low values ofS(k)(XuY) indicate independence betweenX
andY, while high values indicate synchronization@becoming
maximal whenS(k)(XuY)→1#.

The opposite interdependenceS(k)(YuX) is defined in
complete analogy. It is, in general,not equal toS(k)(XuY). If
S(k)(XuY).S(k)(YuX), instead of assuming a causal rel
tionship, we just say thatY is more ‘‘active’’ thanX. As was
argued in@18#, high activity is mainly due to a large effectiv
dimensionD, on the typical length scale set by the distanc
uxn2xr n,k

u and uxn2xsn,k
u.
uld

d
t

e

s

The second interdependence measure to be used in
work was also introduced in@18#. In Eq. ~8! we essentially
compare theY-conditioned mean squared distances to
unconditioned mean squared nearest neighbor distances
stead of this, we could have compared the former m
squared distances to random points, Rn(X)5(N
21)21S j Þn(xn2xj )

2. Also, in ergodic theory geometric av
erages are often more robust and easier to interpret
arithmetic ones. Therefore let us use the geometrical ave
in the analogon of Eq.~8! and define

H ~k!~XuY!5
1

N (
n51

N

ln
Rn~X!

Rn
~k!~XuY!

. ~10!

This is zero ifX andY are completely independent, while
is positive if nearness inY also implies nearness inX for
equal time partners. It would be negative if close pairs inY
corresponded mainly to distant pairs inX. This is very un-
likely but not impossible. ThereforeH (k)(XuY)50 suggests
that X and Y are independent, but does not prove it. Th
~and the asymmetry under the exchangeX↔Y! is the main
difference betweenH (k)(XuY) and mutual information. The
latter is strictly positive wheneverX and Y are not com-
pletely independent. As a consequence, mutual informa
is quadratic in the correlationP(X,Y)2P(X)P(Y) for weak
correlations ~here, P are probability distributions!, while
H (k)(XuY) is linear. ThusH (k)(XuY) is more sensitive to
weak dependencies, which might make it useful in appli
tions. Also, it should be easier to estimate than mutual inf
mation, which is notoriously hard to estimate reliably.

IV. NUMERICAL EXAMPLES

The aim of this section is to see numerically whether a
relationship exists between the activity defined in the l
section and a driver-response relationship. In principle th
should exist such a relationship, since we have argued
the system with higher dimension should be more active,
usually the response does have higher dimension. This w
agree with the conclusion of@17#, and contradict@16,10#. But
it is well known that observed attractor dimensions can
quite different from real ones, in particular if one has only
finite amount of noisy data and weakly coupled systems@22#.
In order to obtain results that can be easily compared to th
of @17,16,10#, we study the same systems as these autho

A. Lorenz driven by Rössler

As a first example, we studied the unidirectiona
coupled systems proposed in Ref.@10#. The driver is an au-
tonomous Ro¨ssler system with

ẋ152a$x21x3%,

ẋ25a$x110.2x2%, ~11!

ẋ35a$0.21x3~x125.7!%,

which drives a Lorenz system in which the equation forẏ2 is
augmented by a driving term involvingx2 ,
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ẏ1510~2y11y2!,

ẏ2528y12y22y1y31Cx2
2, ~12!

ẏ35y1y22
8

3
y3 .

The unidirectional coupling is introduced in the last te
of the second equation, the constantC being its strength.
Notice thatx2 enters quadratically in the coupling, whence
cannot be written as a univalent function ofy1 , y2 , y3 , and
ẏ2 . Thus we do not have a strict argument telling us t
DY>DX , but the latter seems extremely likely.

As in Ref. @10#, the parametera is introduced in order to
control the relative frequencies between the two syste
The differential equations were iterated, together with
equations for the tangent vectors, by using fourth and fi
order Runge-Kutta algorithms withDt50.00320.009. This
was checked to yield numerically stable results, while lar
Dt and/or a third order algorithm would have given differe
results. In order to eliminate transients, the first 106 iterations
were discarded. From the increase of the tangent vectors
ing the following 106 iterations we obtained the Lyapuno
exponents. Delay vectors with delayt50.3 and embedding
dimensions 4 and 5 were constructed fromx1(t) andy1(t).
This delay corresponds to roughly 1/4 of the average pe
of the Lorenz equations. All time sequences had lengthN
55000. In order to check for stability and for very lon
transients, all computations were repeated several times
different initial conditions.

For the parameters considered here, the Lyapunov e
nents of the Ro¨ssler arel i'0.09a, 0, 25a; the ones of the
Lorenz without coupling arel i'0.84, 0,214.5. Figure 1
shows the maximum Lyapunov exponent of the driven L
renz system as a function of the coupling strengthC. The
continuous curve shows the result fora56; the broken one
corresponds toa510. For generalized synchronization, th
maximum Lyapunov exponent should be negative. Whena
510, this is observed for 2.1,C,2.7 and forc.2.9. For all
values of C considered in Fig. 1, the maximal Lyapuno

FIG. 1. Maximum Lyapunov exponents of the modified Lore
system driven by a Ro¨ssler. The continuous curve is fora56, the
broken fora510.
t
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exponent of the driven system is larger than the smallest
of the driver, and therefore we have only weak synchroni
tion.

Figure 2 shows the interdependenciesS(XuY), S(YuX),
H(XuY), andH(YuX) for a56 anda510, and for different
numbers of nearest neighbors. The embedding dimen
wasm55. In all panels, lines with crosses~lower curves! are
for S and lines with squares~upper curves! are for H; the
dark lines denote (YuX) interdependencies, and the gra
lines are for (XuY). All interdependencies rise with the cou
pling strength, with few exceptions. These exceptions~at C
'2.5 for a56 and at 2.3,C,2.8 for a510! occur exactly
at places where the maximal Lyapunov exponent of
driven system is nonmonotonic. Thus the dependencies
monotonic functions of the Lyapunov exponent. The me
sureS is more sensitive to the sign of the Lyapunov expon
than isH, as seen from the sharper increase ofS when the
Lyapunov exponent passes through zero and the sys
synchronize.

In Ref. @10# this system was studied only fora56 and
C58. The latter corresponds to very strong coupling. It w
found that the (YuX) interdependence was larger than vi
versa. This was taken as a proof that in general the resp
state depends more on the driver state than vice versa, a
was proposed that this result could be used as a gen
method to detect driver-response relations.

Our results withS and H agree perfectly with those o
@10#, if we keep the same values fora and C, and usek
>20, i.e., for large neighborhoods. In case ofS we find
S(YuX)> S(XuY) for all k and a, providedC.5. Finally,
we also find the same inequalityS(YuX).S(XuY) for very
small couplings~below the synchronization threshold!, while

FIG. 2. Nonlinear interdependencies between a Lorenz sys
driven by a Ro¨ssler system, plotted as a function of the coupli
strength. Left side graphs correspond toa56 and right side graphs
to a510. From top to bottom, the graphs are for 10, 20, and
nearest neighbors.S(YuX), black lines with crosses;S(XuY), gray
lines with crosses;H(YuX); black lines with squares andH(XuY),
gray lines with squares. See text for details.
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the opposite inequality sometimes holds for intermediateC.
A more consistent picture is seen in the behavior

H(XuY) and H(YuX). Except in the casea56, C.4, and
k>20, we always foundH(XuY).H(YuX), in agreement
with the prediction of@17#. This inequality is most pro-
nounced for small values ofC.

Our results can be understood by the following heuris
arguments:

~i! For strong couplings the two systems are so stron
synchronized that the differences in interdependence
small, and we can predictx from y essentially, as well asy
from x.

~ii ! The theoretical predictionsH(XuY).H(YuX) and
S(XuY).S(YuX) are based on the limiting behavior fo
small neighborhoods. It is thus not too surprising that th
can be violated for large values ofk.

~iii ! For uncoupled systems (C50) one hasS(XuY)
,S(YuX) if DX,DY and vice versa. Notice that this@which
is easily obtained from Eq.~7!# is the opposite of what we
expect if DX,DY holds only due to the coupling. In ou
case, DRoessler'2.018,DLorenz'2.058. This explains why
S(XuY),S(YuX) for very small C (C,1). In contrast,
H(XuY)5H(YuX)50 for uncoupled systems, whence n
such problem exists forH. Thus we expect that the behavio
of H(XuY) at small couplings is easier to interpret than t
behavior ofS, which should depend nontrivially onk andN.
This is precisely what we found.

B. Two coupled Hénon maps

As a second example, we studied two undirectiona
coupled He´non maps similar to the ones proposed in@17#,
with equations

x1851.42x1
21b1x2 ,

~13!
x285x1

for the driver, and

y1851.42~Cx1y11~12C!y1
2!1b2y2 ,

~14!
y285y1

for the response. Again we discarded the first 106 iterations,
and obtained Lyapunov exponents from the next 106. Inter-
dependencies were then estimated fromN55000 iterations
using three-dimensional delay vectors. As in the previo
example, the stability of the results was checked by star
from different initial conditions. For calculating the interd
pendencies we usedk510 nearest neighbors. No significa
changes were observed for other values ofk.

The constantsb1 andb2 were both set to 0.3 when ana
lyzing identical systems, and to 0.3 and 0.1 when analyz
nonidentical ones. Furthermore, in all cases we also stu
how the results changed if white measurement noise
added either to the driver, to the response, or to both.

1. Identical systems

We first studied the caseb15b250.3. This is the ‘‘ca-
nonical’’ value for the He´non map, for whichl150.4192
and D51.26. One easily sees that (y1 ,y2)5(x1 ,x2) is a
f

c

ly
re

y

-

s
g

g
ed
as

solution of Eqs.~13! and ~14!. Thus we can have identica
synchronization@8#, but due to the asymmetry of the cou
pling we cannot rule out nonidentical~generalized! synchro-
nization either.

Figure 3 ~solid line! shows the maximum Lyapunov ex
ponent of the response system. It becomes negative for
plings larger than 0.7, when identical synchronization b
tween the systems takes place. But it is also slightly nega
for 0.47,C,0.52. Plotting differencesx12y1 , e.g., one
sees that there is no identical synchronization in this w
dow. But making a cut through the attractor of the combin
system, by plotting, e.g., pairs (x2 ,y2) whenever ux1u
,1024, one sees a fractal structure that clearly shows t
there is no identical synchronization. On the other ha
l1

(Y),0, which leaves only the possibility of generalize
synchronization. In this window (0.47,C,0.52), the
Kaplan-Yorke formula givesD'2.25, showing that this syn
chronization is weak. ForC.0.7, the Kaplan-Yorke formula
does not, of course, apply to the combined system, andD
5DHénon51.26.

Interdependencies are shown in Figs. 4~A! and 4~D!. As
expected, we see thatS and H both rise sharply atC>0.7,
where identical synchronization sets in. The fact that s
chronization is perfect is seen from the fact thatS(YuX)
51 for C>0.7. In contrast, we do not see any anomaly
C'0.5, showing again that the synchronization atC'0.5 is
very weak indeed. ForC,0.7, we see thatH(XuY)
.H(YuX), in agreement with our general prejudice that t
response has higher dimension and is thus more active.
though not so pronounced, this difference is also seen foS.

We also analyzed how both measures changed with
inclusion of measurement noise@signal-to-noise (S/N) am-
plitude ratio;25%#. Figures 4~B! and 4~E! show the results
when the noise is added to the driver, and Figs. 4~C! and
4~F! when it is added to the response. In general, we exp
of course, a decrease of any dependences when nois
added. Formally, we have to discuss howR(k)(XuY),
R(k)(YuX), R(k)(X), andR(X) change if noise is added t
X:

~i! R(X) changes very little, sinceS/N!1.

FIG. 3. Maximum Lyapunov exponent of the response syst
for two coupled He´non systems withb15b250.3 ~solid line!, b1

50.3, b250.1 ~dashed line! andb150.1, b250.3 ~dotted line!.
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~ii ! R(k)(X) increases strongly, since the dimension of t
noisy time series is large.

~iii ! R(k)(XuY) increases little ifX andY are weakly de-
pendent~it is already large!, but increases even more tha
R(k)(X) if X andY are strongly dependent.

~iv! The last is also true forR(k)(YuX).
From these we see thatH(YuX) should decrease roughl

as much asH(XuY), and this decrease should be stronges
X andY are fully synchronized. In contrast,S(XuY) should
decrease much less~or even increase! if noise is added toX,
and if X andY are weakly dependent. IfX andY are fully
synchronized, adding noise toX suppressesS(YuX) much
more thanS(XuY) since the strong increase ofR(k)(YuX) is
then not compensated by any change ofR(Y). Adding noise
to Y can be discussed similarly. All these predictions a
fully verified in Fig. 4. Notice that measurement noise c
reverse the general inequality H(driver-response)
.H(response-driver), as seen, e.g., in Fig. 4~E! for C
.0.7. In general,Sseems to be less robust against measu
ment noise thanH.

2. Nonidentical systems

Figures 5~A! and 5~D! show dependencies for differentb
parameters (b150.3, b250.1) where identical synchroniza
tion is impossible, and where the driver has higher dim
sion than the uncoupled response. In this case, the inte
pendencies do not increase as sharply as in the previous
and they reach lower values. With both measures we se
increase betweenC50.120.4, in agreement with the nega
tive values of the maximum Lyapunov exponent for the
coupling strengths~see Fig. 3!. As in Ref. @17#, we found
S(XuY).S(YuX) and H(XuY).H(YuX). These inequali-
ties still hold when adding measurement noise to the dr

FIG. 4. Interdependencies between two He´non systems with
equalb parameterb15b250.3 as functions of the coupling streng
@panels~A! and~D!#. In the other panels, white measurement no
has been added either to the driver@panels~B! and ~E!# or to the
response@panels~C! and~F!#. Left side figures correspond toS, and
the ones in the right side toH. Black lines are the (YuX) interde-
pendencies, and gray lines correspond to (XuY).
e

if

e

e-

-
e-
se,
an

e

r

@Figs. 5~B! and 5~E!#. But when the noise is added to th
response@Figs. 5~C! and 5~F!#, only the inequality forH
survives, while that forS is reversed. These dependencies
noise can be discussed in complete analogy with the prev
case of identical systems.

The situation changes slightly if the uncoupled respo
has higher dimension than the driver, as in the caseb1
50.1, b250.3 shown in Fig. 6. The panels of this figur
show more structure than those of Fig. 5, mainly since
Lyapunov exponent also shows more structure~see Fig. 3!.
From Fig. 6~F! we see that there is a parameter windo
0.4<C<0.6, whereH(YuX).H(XuY) after adding noise to
Y. This is not yet understood, but all other features in t
plot can be understood heuristically along the lines discus
above.

FIG. 6. Same as Fig. 4 withb150.1, b250.3. In panel~C!, the
curve forS(XuY) coincides with thex axis within our precision.

e FIG. 5. Same as Fig. 4, withb150.3, b250.1.
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V. CONCLUSION

In this work we studied the possibility of predictin
driver-response relationships from asymmetries in nonlin
interdependence measures. More precisely, we studied
particular interdependence measures, introduced in@18#, and
applied them to simple asymmetrically coupled strange
tractors. In contrast to previous works, we find that su
predictions are not always reliable, although we agree w
@17# that they would be possible for ideal~noise-free, infi-
nitely long! data. We agree with@16,10# as far as one of thei
numerical examples is concerned, but we show that this
a mere coincidence, and cannot be generalized.

Instead, we confirmed the conjecture of@18# that asym-
metries in interdependence measures reflect mainly the
ferent degrees of complexity of the two systemsat the level
of resolution at which these measures are most sensitive. For
practical applications, this is not the fine level at which th
oretical arguments like those of@17# apply. The latter predict
correctly that the response is more complex, i.e., has a hi
Kaplan-Yorke dimension. But this argument can become
relevant even for the extremely simple toy models that
I.
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la
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ar
o

t-
h
h
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if-

-

er
r-
e

studied in the present paper. It should be even less rele
in realistic situations where all sorts of noise, nonstationar
and shortness of data present additional limitations.

Nevertheless, we propose that asymmetries of meas
interdependencies can be very useful in understand
coupled systems. Indications for this were given
@17,16,10,18#. All these papers were dealing with neur
physiology. Even if no causal relationships can be dedu
from such asymmetries, it was found in@16,10,18# that the
resulting patterns are closely related to clinical observatio
and could, e.g., contribute to a more precise localization
epileptic foci and possibly be useful for predicting epilep
seizures.

An unexpected result of our study is that for the simu
tions performed, the measureH(XuY), which had not done
very well in preliminary tests, was actually more robust a
easier to interpret than the measureS(XuY), which was
mostly used in@18#. However, this should not be directl
extended to real life data. A more systematic compara
study with a large database of EEGs from epilepsy patien
under way.
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