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Learning driver-response relationships from synchronization patterns
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We test recent claims that cauddriver-responserelationships can be deduced from interdependencies
between simultaneously measured time series. We apply two recently proposed interdependence measures that
should give results similar to cross predictabilities used by previous authors. The systems that we study are
asymmetrically coupled simple modelsorenz, Roessler, and Hen modely, the couplings being such that
they lead to generalized synchronization. If the data were pdriecte-free, infinitely longy we should be able
to detect, at least in some cases, which of the coupled systems is the driver and which the response. This might
no longer be true if the time series has finite length. Instead, estimated interdependencies depend strongly on
which of the systems has a higher effective dimensibtie typical neighborhood sizesed to estimate them,
and causal relationships are more difficult to detect. We also show that slightly different variants of the
interdependence measure can have quite different sensitivities.

PACS numbd(s): 05.45.Tp, 05.45.Xt

. INTRODUCTION =H(y(t))+ U (x(t)), we immediately have(t)=U"(y(t)
—H(y(t))) if U(xX) can be inverted.
The study of synchronization between chaotic systems The transformationl’ does not need to be smooth as con-

has been a topic of increasing interest since the beginning @iidered in[3,11] and explicitly required if12,13. In fact,
the 1990s. One important step in this direction was the introPyragas[14] defined as strong and weak synchronizations
duction of the concept ajeneralized synchronizatigi—3],  the cases of smooth and nonsmooth transformations, respec-
extending previous studies of coupled identical systemévely (see alsd15]). _ . _
(identical synchronizatiorj4—9]) to the study of coupled  If one of the systems drives the other and a relationship
systems with different dynamics. like Eq. (2) exists, it is possible to predict the response from

Let us denote by andY two dynamical systems, and by the simultaneoqs state of the .drive(. But the opposite is not
x={X1,...Xq} and y=1ly;,...y;} their state vectors, ob- true. Just knowing that a relat|_onsh|p like ER) exists qnd
tained, for example, by delay embedding. We assume in thif1at the state off can be predicted from that o, it is in
following that the dynamics is deterministic with continuous g‘ir.‘er:@' nﬁt possible tOTﬁ.Ste.lb“SS .Wh'Ch hl‘;ntheb_q”v_er and
time (the case of maps is completely analogous, and will b(%’y Ic q)lifpglrespotnse. g S IS 0 V'_?ES Wb IS uectlvet
treated in Secs. Il and IV We further assume the systems €., D= exists and is unique The above arguments

idirectionall led i is th ¢ tell us thatV is indeed likely to be bijective in the case of
aré unidirectionally coupied, saying is the autonomous generalized synchronization, at least for nearlyalllf a
driver andY the driven response:

coupling is not regular in the above sense, then its singulari-

i) ties are typically located on a set of measure zero. One might
XM =FX(®), (13 tend to believe thaX must controlY (and not the opposiie
Yt =G(y(1),x(1)) (1b) if y follows the motion ofx with a positive time delay. But

even then one cannot be sure, since there could be an internal
We speak about generalized synchronization betwéen delay loop inY that causes the emitted time series to lag

andY if the following relation exists: behind. Also, both systems could be driven by a third sys-
tem. Thus detecting causal relationships is not easy, in gen-
y(t) =WV (x(t)). (2 eral, although it is of course of utmost importance in many
applications.

This requirement is less restrictive than that of identical Ssyn-  |n the above we pretended that we could deactly
chronization, in which¥ =1. Equation(2) implies that the  \yhether the state of one of the systems is a function of the
state of the response system is a functaily of the state of  other. This is of course never the case in practical applica-
the driver. It is not to be confused with the opposite relationtjons. Different observables that should enable one to detect
x(t)=®(y(t)) (considered in[10]), which is generically interdependencies in realistic cases were introduced by sev-
valid for sufficiently high embedding dimensions if the cou- era| authors. Following an original idea of Rulkov and co-
pling is nonsingular, in the sense of obeying de{(dx,)  workers[3,11], mutual cross predictabilities were defined
#0 everywhere. This follows from the implicit function and studied by Schifet al. [17] and Le Van Quyeret al.
theorem, which allows us to invert E{lb) to x=x(y,¥),  [16,10. A quantity more closely related to that f8], but
and from the fact thaf(t)=(y(t),y(t)) is as good a state optimized for robustness to noise and imperfections in the
vector asy(t). In particular, if we consideiG(y(t),x(t))  data, was used ifiL8]. In the latter paper, a number of other
variants were also discussed. Some of these variants were
tested and found to be inferior, but no systematic tests were
* Author to whom correspondence should be addressed. made.
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In contrast to our above discussion, the author$1d]  mated from the Kaplan Kalpan-Yorke formyla0]

and[16,10 claimed that driver-response relationshias be [ N
deduced from such interdependencies. But their proposals, Dy y=I +2 ) 3)
backed by numerical studies of simple model systems, were =1 Nl

ml_,ltually contradictory. While it was argued 7] that the lfehere,l is the largest integer for which the sum oveis
driver statex should be more dependent on the response sta . : )
o non-negative Generically, we must expect this also to be

y (i.e., there exists a stronger functional dependeneyx) the dimension of¢ alone? The reason is that, as pointed out
than vice versdwhich is, as we said, a bit counterintuitye in the IntroductionX will be a(single- or multivaluegifunc-
exactly the opposite was claimed[it6,10. Finally, in[18]  tion of Y, if the inverse ofG(x,y) is single- or multivalued.
it was claimed that neither can be expected to be correct i®n the other hand, the Kaplan-Yorke dimensionXolone
realistic situations with finite noisy data, and that it is in may be equal t®Dy,y or smaller. It is given by a formula
general the state of the system with more excited degrees @fmilar to Eq.(3), but with \; replaced by}\i(x) . We see that
freedom(the more “active” systemthat is more indepen-
dent, while the state of the more “passive” systénith less Dy<Dy.y iff A">\%), (4)
excited degrees of freedgrdepends on it.
It is the purpose of the present work to settle this questiowherel is determined by <0<, A9 If this
by carefully studying simple toy models, including Lorenz, inequality holds(together withx{")<0), we haveweak syn-
Roessler, and H®n systems, using two of the interdepen-chronizationin the sense of Pyragd44]. In the opposite
dence measures proposed 8]. Basic notions involved in case, i.e.)\(ly)s)\i(ﬁ)l, one is likely to have strong synchro-
generalized synchronization are reviewed in Sec. Il. In Semization, although this might not be true due to multifracta-
[, we recall the operational definition of interdependencelity. Due to the latter, it is possible that the box-counting
used in[18]. Numerical results are presented in Sec. IV, anddimension ofX is strictly smaller than that oK+Y, al-
our conclusion is drawn in Sec. V. though the equality holds for the Kaplan-Yorkee., infor-
mation dimensions. In such a cadecannot be smooth, but
regions where¥ is nonsmooth might well be of measure
Il. GENERALIZED SYNCHRONIZATION WITH zero[15].
EXACTLY KNOWN DYNAMICS Another approach for detecting generalized synchroniza-
While identical synchronization is easily visualized by tion IS by using two identical response systems that differ
plotting the difference between one of the coordinates of th@Nly in their initial conditions. If these replicas get synchro-
driver and the corresponding coordinate of the response, nyz€d after some transient, their trajectories are obviously
similarly simple way exists to detect generalized synchronilndependent of the initial conditions, thus being only a func-
zation. Constructing the functio explicitly [19] might be tion of the drlver._Thls is most easily checked visually, e.g.,
possible in particularly simple cases, but since this will neveY Plotting the difference between two analogous compo-
be exact, it will never be clear whether deviations from Eq."€nts of the two replicas against time. In this way one can
(2) are due to a lack of synchronization or the inexactness ofiSO check for intermittencies and long transients that can,
V. Instead, the methods of choice in cases where the exal@gether with finite numerical resolution, severely obscure
equations of motion are known and where arbitrary initialth€ interpretation.
states can be prepared are the study of Lyapunov exponents
and the identical synchronization of two identical response!!l- GENERALIZED SYNCHRONIZATION IN REAL LIFE

systems differing in their initial conditions. The above considerations depend on the availability of the
For the driver-response systems as in 8g, one hasd  gxact equations of motion, and on the ability to prepare iden-

+r different Lyapunov exponents. Of theskexponents co-  tica| replicas. Neither holds for typical applications.

incide with those of the(autonomous driver denoted by Real signals usually consist of short segments of data con-

AX), i=1..d. The other exponents coincide with those of taminated by noise. Furthermore, the dynamics of the system

the response, considered as a nonautonomous system drivignnot known, and therefore the methods described in the

by the external signat(t) (calledconditional Lyapunov ex- previous section are not applicable.

ponentsin [8].> They will be called\(", i=1..r. Ranking While identically synchronized systems describe the same
the Lyapunov exponents as usual by magnitude, we haveajectory in the phase space, the hallmark of a relationship
generalized synchronization if\fi(Y)<0. as in Eq.(2) is that any recurrence of implies a recurrence

Furthermore, once the Lyapunov exponents are knowrQf Y. If X comesexactlyback to a state it had already been
the dimension of the combined systexa Y can be esti- in before, the same must be true fgr In real data, one
cannot, of course, expect exact recurrence. We will therefore
use as a criterion that whenever two stateXadre similar,
the contemporary states ¥f are also similar.

1 .
To see this, we have to recall that all Lyapunov exponents are . . .
obtained by iteratingl+r basis vectors in the tangent space, and In [17,16,1, this was implemented by making forecasts

reorthogonalizing them repeatedly. Tangent vectors corresponding

to A span only the firsd coordinates. The remaining tangent

vectors have the first components equal to zero, either by orthogo- 2For example, the dimension of an attractor constructed exclu-
nalization or because their lastcomponents increase faster than sively from components of; we keep, of course, the fact thétis

any of the firstd components. driven by X.
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of x, using local neighborhood&.g., by means of locally The second interdependence measure to be used in this
linear mapy and comparing the quality of these forecastswork was also introduced ifi8]. In Eq. (8) we essentially
with that of forecasts based on “wrong” neighborhoods. Incompare theY-conditioned mean squared distances to the
the latter, the nearest neighbors xf are replaced by the unconditioned mean squared nearest neighbor distances. In-
equal time partners of the nearest neighbory,of For rea-  stead of this, we could have compared the former mean
sons explained if18], we prefer to use instead a measuresquared distances torandom points, Ry(X)=(N
closer to the original proposal of Rulkaat al. [3]. But we ~ —1)7'Zj.n(Xy—X;)% Also, in ergodic theory geometric av-
should stress that we see no reason why our results shougfages are often more robust and easier to interpret than
not be carried over to the observables used1i, 16,19  arithmetic ones. Therefore let us use the geometrical average
immediately. in the analogon of Eq(8) and define

Let us suppose we have two simultaneously measured

univariate time series from which we can reconstruct . 1N Ry (X)
m-dimensional delay vectof@1] x,=(X,,...X,_m+1) and HO(X|Y)= Ngl Inm' (10
yn:(yna--wynferl)a n=1,.N. "

Letr,; ands,;, j=1,..k, denote the time indices of the

This is zero ifX andY are completely independent, while it
is positive if nearness ilY also implies nearness X for
equal time partners. It would be negative if close pair¥in
corresponded mainly to distant pairs X1 This is very un-
1. likely but not impossible. Thereford ®(X|Y)=0 suggests
ROX)== (Xa—X )2 (5) thatX andY are independent, but does not prove it. This
ki=1 " (and the asymmetry under the exchange Y) is the main
difference betweetd ¥ (X|Y) and mutual information. The
latter is strictly positive wheneveX and Y are not com-
Sletely independent. As a consequence, mutual information
is quadratic in the correlatioR(X,Y) — P(X)P(Y) for weak
1k correlations (here, P are probability distributions while
ROX|Y)=2 S (x—xs )2. 6 H®(X]Y) is linear. ThusH®(X]|Y) is more sensitive to
ki=1 ) weak dependencies, which might make it useful in applica-
tions. Also, it should be easier to estimate than mutual infor-

If the point cloud{x,} has average squared radB6X)  mation, which is notoriously hard to estimate reliably.
=(RN"1(X)) and effective dimensiol (for a stochastic

time series embedded im dimensions, D=m), then
Rﬂ‘)(X)<R(X) for k<N. More precisely, we expect

k nearest neighbors of, andy,,, respectively. For eack,,
the squared mean Euclidean distance tokitseighbors is
defined as

and theY-conditionedsquared mean Euclidean distance is
defined by replacing the nearest neighbors by the equal tim
partners of the closest neighborsyaf,

IV. NUMERICAL EXAMPLES

© D The aim of this section is to see numerically whether any
Ry (X)/R(X)~(kIN)=", (7)  relationship exists between the activity defined in the last
) ) ] . section and a driver-response relationship. In principle there
whereD is the dimension of the probability measure from should exist such a relationship, since we have argued that
which the pointsx, are drawn. FurthermoreR{?(X|Y)  the system with higher dimension should be more active, and
~RF(X)<R(X) if the systems are strongly correlated, usually the response does have higher dimension. This would
while RW(X|Y)>R¥(X) if they are independent. Accord- agree with the conclusion $17], and contradicf16,10. But
ingly, we can define an interdependence meaStiféX|Y) it is well known that observed attractor dimensions can be

as quite different from real ones, in particular if one has only a
finite amount of noisy data and weakly coupled systEp2$
® 10 Rﬁk)(X) In order to obtain results that can be easily compared to those
SHX|Y)= NnZl ROXY) (8  of[17,16,10, we study the same systems as these authors.
- n
SinceR(X|Y)=R{(X) by construction, we have A. Lorenz driven by Rossler

As a first example, we studied the unidirectionally
coupled systems proposed in REE0]. The driver is an au-
tonomous Resler system with

0<SW(x]Y)=1. (9)

Low values ofS®(X|Y) indicate independence betwen
andY, while high values indicate synchronizatiimecoming
maximal whenS®(X|Y)—1].

The opposite interdependen@¥(Y|X) is defined in
complete analogy. It is, in generalot equal toS®(X]Y). If
S (X]Y)>s®(Y|X), instead of assuming a causal rela-
tionship, we just say that is more “active” thanX. As was X3= a{0.2+X3(X; = 5.7},
argued il 18], high activity is mainly due to a large effective
dimensionD, on the typical length scale set by the distanceswhich drives a Lorenz system in which the equationyfeis
[Xn=%_ | and|x,—=xs |- augmented by a driving term involving,

5(1: - a{X2+ Xg},

XZZQ{X1+O.ZX2}, (11)
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y1=10(—y1+Ya2),
FIG. 2. Nonlinear interdependencies between a Lorenz system

o — Co— 2 driven by a Rssler system, plotted as a function of the coupling
V2= 2817 Y2 Y1yt O, (12 strength. Left side graphs correspondite 6 and right side graphs
to a=10. From top to bottom, the graphs are for 10, 20, and 30
nearest neighbor$§(Y|X), black lines with crosses(X|Y), gray
lines with crossesH (Y|X); black lines with squares artd(X]|Y),
gray lines with squares. See text for details.

The unidirectional coupling is introduced in the last term
of the second equation, the constahtbeing its strength. exponent of the driven system is larger than the smallest one
Notice thatx, enters quadratically in the coupling, whence it of the driver, and therefore we have only weak synchroniza-
cannot be written as a univalent functionyaf, y,, ys, and  tion.
y,. Thus we do not have a strict argument telling us that Figure 2 shows the interdependenci&X|Y), S(Y|X),
Dy=Dy, but the latter seems extremely likely. H(X|Y), andH(Y|X) for «=6 anda= 10, and for different

As in Ref.[10], the parametew is introduced in order to numbers of nearest neighbors. The embedding dimension
control the relative frequencies between the two systemavasm=5. In all panels, lines with crosséewer curve$ are
The differential equations were iterated, together with thefor S and lines with square@ipper curvegsare for H; the
equations for the tangent vectors, by using fourth and fifttdark lines denote Y|X) interdependencies, and the gray
order Runge-Kutta algorithms witht=0.003-0.009. This lines are for K|Y). All interdependencies rise with the cou-
was checked to yield numerically stable results, while largepling strength, with few exceptions. These exceptitatsC
At and/or a third order algorithm would have given different~2.5 for«=6 and at 2.3C< 2.8 for «=10) occur exactly
results. In order to eliminate transients, the first térations  at places where the maximal Lyapunov exponent of the
were discarded. From the increase of the tangent vectors dudriven system is nonmonotonic. Thus the dependencies are
ing the following 16 iterations we obtained the Lyapunov monotonic functions of the Lyapunov exponent. The mea-
exponents. Delay vectors with delay=0.3 and embedding sureSis more sensitive to the sign of the Lyapunov exponent
dimensions 4 and 5 were constructed frapit) andy(t). than isH, as seen from the sharper increaseSafthen the
This delay corresponds to roughly 1/4 of the average periodlyapunov exponent passes through zero and the systems
of the Lorenz equations. All time sequences had legth synchronize.
=5000. In order to check for stability and for very long In Ref.[10] this system was studied only fer=6 and
transients, all computations were repeated several times witG= 8. The latter corresponds to very strong coupling. It was
different initial conditions. found that the ¥|X) interdependence was larger than vice

For the parameters considered here, the Lyapunov expaersa. This was taken as a proof that in general the response
nents of the Rssler are\;~0.0%, 0, —5«; the ones of the state depends more on the driver state than vice versa, and it
Lorenz without coupling are\;=0.84, 0,—14.5. Figure 1 was proposed that this result could be used as a general
shows the maximum Lyapunov exponent of the driven Lo-method to detect driver-response relations.
renz system as a function of the coupling strenGthThe Our results withS and H agree perfectly with those of
continuous curve shows the result fer=6; the broken one [10], if we keep the same values far and C, and usek
corresponds taxr=10. For generalized synchronization, the =20, i.e., for large neighborhoods. In case $fwe find
maximum Lyapunov exponent should be negative. When S(Y|X)= S(X|Y) for all k and «, providedC>5. Finally,
=10, this is observed for 24C<2.7 and forc>2.9. Forall  we also find the same inequali§(Y|X)>S(X|Y) for very
values of C considered in Fig. 1, the maximal Lyapunov small couplinggbelow the synchronization threshglavhile

] 8
Y3=YiY2— §Y3-
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the opposite inequality sometimes holds for intermed@&te 0.5 - . - -

A more consistent picture is seen in the behavior of
H(X]Y) andH(Y|X). Except in the casee=6, C>4, and ~
k=20, we always foundH(X|Y)>H(Y|X), in agreement 03 k
with the prediction of[17]. This inequality is most pro-
nounced for small values .

Our results can be understood by the following heuristic
arguments:

(i) For strong couplings the two systems are so strongly& 0

unov exponent

synchronized that the differences in interdependence ar&
small, and we can prediot from y essentially, as well ag o1y I
from x. o2l Y I N

(i) The theoretical predictionsd(X|Y)>H(Y|X) and e )
S(X]Y)>S(Y|X) are based on the limiting behavior for 03 02 oa Py 08 .
small neighborhoods. It is thus not too surprising that they ' coupling strength C '
can be violated for large values kf

(i) For uncoupled systemsC(0) one hasS(X|Y) FIG. 3. Maximum Lyapunov exponent of the response system

<S(Y|X) if Dy<Dy and vice versa. Notice that tHiwhich ~ for two coupled Heon systems with,=b,=0.3 (solid line), b,

is easily obtained from Eq7)] is the opposite of what we =~ 0-3.b2=0.1(dashed lingandb,=0.1,b,=0.3 (dotted ling.

expect if Dy<Dy holds only due to the coupling. In our

case, Droessier=2.018<D | 41en7~2.058. This explains why solution of Eqs.(13) and (14). Thus we can have identical
S(X|Y)<S(Y|X) for very smallC (C<1). In contrast, synchronization{8], but due to the asymmetry of the cou-
H(X]Y)=H(Y[X)=0 for uncoupled systems, whence no pling we cannot rule out nonidenticajeneralizeil synchro-
such problem exists fdd. Thus we expect that the behavior njzation either.

of H(X|Y) at small COUplingS is easier to interpret than the Figure 3(50||d |ine) shows the maximum Lyapunov ex-
behavior ofS, which should depend nontrivially doandN.  ponent of the response system. It becomes negative for cou-

This is precisely what we found. plings larger than 0.7, when identical synchronization be-
; tween the systems takes place. But it is also slightly negative
B. Two coupled Heon maps for 0.47<C<0.52. Plotting differences;;—y;, e.g., one

As a second example, we studied two undirectionally-Sees that there is no identical synchronization in this win-
coupled Haon maps similar to the ones proposed[17], dow. But making a cut through the attractor of the combined
with equations system, by plotting, e.g., pairsx4,y,) whenever |x,|

, 5 <104, one sees a fractal structure that clearly shows that
X;=1.4=x1+bixp, there is no identical synchronization. On the other hand,
(13)  \{<0, which leaves only the possibility of generalized

x2=X synchronization. In this window (0.47C<0.52), the
for the driver, and Kaplan-Yorke formula give® ~2.25, showing that this syn-
chronization is weak. Fa€>0.7, the Kaplan-Yorke formula
yiz1.4—(Cx1y1+(1—C)y§)+b2y2, does not, of course, apply to the combined system, @nd
, (14 =D Haqon=1.26.
Y2=Y1 Interdependencies are shown in FigéA¥and 4D). As

) ] o ] expected, we see th&andH both rise sharply aC=0.7,
for the response. Again we discarded the first iérations,  \yhere identical synchronization sets in. The fact that syn-
and obtained Lyapunov exponents from the neXt 16ter-  chronization is perfect is seen from the fact t&{tY|X)
dependencies were then estimated frid 5000 iterations  —1 for ¢=0.7. In contrast, we do not see any anomaly for

using three-dimensional delay vectors. As in the previoug~ o 5, showing again that the synchronizatiorCat 0.5 is
example, the stability of the results was checked by startingery \weak indeed. Forc<0.7, we see thatH(X|Y)

from different initial conditions. For calculating the interde- >H(Y|X), in agreement with our general prejudice that the
pendencies we used=10 nearest neighbors. No significant resnonse has higher dimension and is thus more active. Al-
changes were observed for other values.of though not so pronounced, this difference is also seeis for
The constant®, andb; were both set to 0.3 when ana-  \ye glso analyzed how both measures changed with the
lyzing identical systems, and to 0.3 and 0.1 when analyzingnq|usion of measurement noi§signal-to-noise §/N) am-
nonidentical ones. Furthermore, in all cases we also studie&mude ratio~25%]. Figures 4B) and 4E) show the results
how the results changed if white measurement noise Wagnhen the noise is added to the driver, and Fig<)4and
added either to the driver, to the response, or to both. 4(F) when it is added to the response. In general, we expect,
of course, a decrease of any dependences when noise is
added. Formally, we have to discuss hdRf¥(X]|Y),
We first studied the case,=b,=0.3. This is the “ca- R®(Y|X), RM(X), andR(X) change if noise is added to
nonical” value for the Haon map, for whichn;=0.4192  X:
and D=1.26. One easily sees thay4(y,)=(X1,X,) Is a (i) R(X) changes very little, sinc&/N<1.

1. Identical systems
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FIG. 4. Interdependencies between twonde systems with Coupling strength
equalb parameteb,;=b,= 0.3 as functions of the coupling strength
[panels(A) and(D)]. In the other panels, white measurement noise FIG. 5. Same as Fig. 4, with;=0.3,b,=0.1.

has been added either to the driypanels(B) and (E)] or to the
responsépanels(C) and(F)]. Left side figures correspond & and
the ones in the right side td. Black lines are theY|X) interde-
pendencies, and gray lines correspondX¢Y().

[Figs. 5§B) and ZE)]. But when the noise is added to the
response Figs. 5C) and 5F)], only the inequality forH
survives, while that foSis reversed. These dependencies on
noise can be discussed in complete analogy with the previous
i RK) ; ; : ; case of identical systems.

(i) R™(X) increases strongly, since the dimension of the The situation changes slightly if the uncoupled response

noisy time series is large. . ; . . .
oK) : o _has higher dimension than the driver, as in the chse
(iil) RV9(X|Y) increases little ifX andY are weakly de =0.1, b,=0.3 shown in Fig. 6. The panels of this figure

ndent(it is alr lar incr ven more than ! . .
pendent(it is already largg but increases eve ore tha show more structure than those of Fig. 5, mainly since the

RM(X) if X andY are strongly dependent. .
(iv) The last is also true foRM(Y|X). Lyapunpv exponent also shows more struct{gee Flg._ 3
From Fig. §F) we see that there is a parameter window,

From these we see the(Y|X) should decrease roughly 4=C<0.6, whereH (Y|X)>H(X|Y) after adding noise to

;S m(let\:(h as] E‘XI|IY), ang th|_s dgc:ease ?houlg(b\((a strhong}gst |f$. This is not yet understood, but all other features in this
andy are Iufly synchronized. fn con r.aﬂ |Y) shou plot can be understood heuristically along the lines discussed

decrease much legser even increasdf noise is added teX, above

and if X andY are weakly dependent. K andY are fully '

synchronized, adding noise % suppresse$(Y|X) much ore A D

more thanS(X|Y) since the strong increase BfY(Y|X) is ol

then not compensated by any changd&¢¥). Adding noise b

to Y can be discussed similarly. All these predictions are o

fully verified in Fig. 4. Notice that measurement noise can ge
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reverse the general inequality H(driver-response) o8 o0 a0
>H(response-driver), as seen, e.g., in Fige)4for C B
>0.7. In generalS seems to be less robust against measure-, **— " :
ment noise tharH ] 0.2  driver + noise A
: 2ot JEEE
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Figures %A) and 3D) show dependencies for differeit O 0z a4 05 o8 1 "o 0z 04 05 o8 1
parameterst{;=0.3, b,=0.1) where identical synchroniza- c F
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tion is impossible, and where the driver has higher dimen- 1 . ]
sion than the uncoupled response. In this case, the interde ;5
pendencies do not increase as sharply as in the previous cas o4
and they reach lower values. With both measures we see a 005
increase betwee@=0.1-0.4, in agreement with the nega- b
tive values of the maximum Lyapunov exponent for these
coupling strengthgsee Fig. 3. As in Ref.[17], we found
S(X|Y)>S(Y|X) and H(X|Y)>H(Y|X). These inequali- FIG. 6. Same as Fig. 4 with;=0.1,b,=0.3. In panelC), the
ties still hold when adding measurement noise to the drivecurve forS(X|Y) coincides with thex axis within our precision.

- W
TT T T T T T

N\

[SIDERSINISIRITIERS 1)

o

0.2 0.4 0.6 0.8 1

o
o
o
o
~
o
o
o
©

Coupling strength



5148 R. QUIAN QUIROGA, J. ARNHOLD, AND P. GRASSBERGER PRE 61

V. CONCLUSION studied in the present paper. It should be even less relevant

In this work we studied the possibility of predicting in realistic situations where all sorts of noise, nonstationarity,

driver-response relationships from asymmetries in nonlineaz?nd shortness of data present additional I|m|_tat|ons.
interdependence measures. More precisely, we studied two VeVertheless, we propose that asymmetries of measured
particular interdependence measures, introducédgh and ~ 'Nterdependencies can be very useful in understanding
applied them to simple asymmetrically coupled strange atcoupled systems. Indications for this were given in
tractors. In contrast to previous works, we find that sucH17.16,10,1& All these papers were dealing with neuro-
predictions are not always reliable, although we agree wittPhysiology. Even if no causal relationships can be deduced
[17] that they would be possible for ide@toise-free, infi-  from such asymmetries, it was found [ib6,10,1§ that the
nitely long) data. We agree witfiL6,10 as far as one of their resulting patterns are closely related to clinical observations,
numerical examples is concerned, but we show that this wagnd could, e.g., contribute to a more precise localization of
a mere coincidence, and cannot be generalized. epileptic foci and possibly be useful for predicting epileptic
Instead, we confirmed the conjecture[aB] that asym-  seizures.
metries in interdependence measures reflect mainly the dif- An unexpected result of our study is that for the simula-
ferent degrees of complexity of the two systeatghe level tions performed, the measuk(X|Y), which had not done
of resolution at which these measures are most senskive very well in preliminary tests, was actually more robust and
practical applications, this is not the fine level at which the-easier to interpret than the measu8€X|Y), which was
oretical arguments like those 7] apply. The latter predict mostly used in[18]. However, this should not be directly
correctly that the response is more complex, i.e., has a highe@xtended to real life data. A more systematic comparative
Kaplan-Yorke dimension. But this argument can become irstudy with a large database of EEGs from epilepsy patients is
relevant even for the extremely simple toy models that weunder way.
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